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TEM images of thin foils with quasi-globular particles are examined by means of two
methods of spatial statistics. The spatial arrangement of particle reference points is
described by means of quadrat count statistics and by polygonal method (the analysis of
the Voronoi mosaic generated by patterns of particle reference points). A good agreement
between the both approaches is found, the polygonal method is more sensitive and its
results are more conclusive. © 1999 Kluwer Academic Publishers

1. Introduction size <100 um) and C (2 wt%) were dry mechan-
The properties of composite materials are influencedcally alloyed for 90 minutes, compacted under the
not only by the amount (volume fractidfy ) and disper-  pressure of 600 MPa (rod diameter 40 mm), annealed
sion (intensityx —number of particles per unit volume) at 550°C/3h and then extruded with 94% diameter
of strengthening phase, but also by its spatial organizareduction; the resulting volume fraction of Al-AT3
tion (arrangement). This arrangement is at best revealegasVy = 8%, roughly one third o¥y, was comprised
by considering the point pattern of particle referencein very coarse particles. Thin foils of the thickness
points determined according to a convenient rule. Its. = (20004 500) A were prepared by spark cutting
description is model-based, which means that suitablyollowed by electropolishing and did not include coarse
chosen characteristics of given sample are evaluategarticles.
and compared with characteristics of basic stochas- Four thin foils have been examined under various
tic models of spatial arrangement [2, 7, 8, 11, 12]. EvermagnificationM ranging from 42 500 to 80 000. The
when the statistical methods are well elaborated andentres of circles circumscribed to particle images have
successful in other areas, their usage in metallographlgeen chosen as the reference points and the circle diam-
is rather exceptional. In the present paper, thin foilseters served as estimates of particle mean breadths
of chosen composite material are analysed in order técf. Fig. 1).
answer three questions: Only the particles with reference points within the se-
_ _ _ lected rectangular windoW of areaA have been con-

1. Is the dispersion of strengthening phase homogesidered (cf. Table 1). For the application of the polygo-
neous w.r.t. the chosen sample size? ~_nal method (see below), Voronoi mosaics generated by

2. Is the arrangement of particle reference points ithe point pattern have been constructed (see Fig. 2): a
space uniform random (i.e., can the point patterns bgmaller rectangular windoW/’ not including distorted
considered as samples from a stationary Poisson poifiginbounded) edge cells was chosen and only the cells

process)? . not intersecting the exclusion line were considered —
3. Are the features of clustering and/or hard coresf, the reduction in number of points (cells) in Table II.
present in the analysed point patterns? For details cf. [1].

The basic idea applied in the analysis is that the or- L .
thogonal projection of a parallel section sampled from2-2. Preliminary analysis

a spatial stationary Poisson point process is a planafhe unique aim of the preliminary analysis is to
Poisson point process. confirm that the chosen samples are representative.

Consequently, two basic sample characteristics have
been evaluated. The sample volume fraction have been

2. Material and methods roughly estimated using the formula [13]
2.1. Material
The composite system Al-4C; has been prepared V] = —2In(1—[Ax])

by powder metallurgy. The starting powders Al (of 1+3L/w
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TABLE | Results of the preliminary analysik & 2000 A

w w W A Agg
Sample M (um?) N (m) (%) @m3) (um3)

50000 7.38 310 72 5.07 154 [131,177]
80000 2.80 200 60 480 275 [225,325]
80000 2.78 300 50 3.57 432 [367,496]
42500 9.76 260 76 4.00 96 [81,111]

g0 w>»

where [Aa] is the point lattice estimate of the fraction
of the projected foil are& covered by particle images
andw is the average value of the mean breadtfThe
formula includes corrections on the particle truncation
and overlap of theirimages. Arough estimate of the ref-
erence point intensity (without an overlap correction)
is

_ N

AL 4 w)’

Figure 1 Sample B, the pattern of particle reference points (outlines ofWhereN is the_ num'ber of particles with referencg p_OintS
particles—see [1]). in the observing window. The results of the preliminary

[A]

Figure 2 Voronoi mosaics generated by point patterns A, B, C and D.
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TABLE Il Results of the polygonal analysis{ = 1)

Sample N mp SD (mp) m3 ma /b1 by ap h (nm)
A 174 0.427 0.123 0.716 2.68 2.585 14.7 0.231 85
B 115 0.644 0.238 1.609 6.72 3.153 16.2 0.184 57
C 150 0.300 0.088 0.361 1.08 2.218 12.0 0.283 57
D 146 0.261 0.045 0.145 0.29 1.098 4.3 0.233 48
PVM 210 0.281 — 0.154 0.36 1.033 4.6 0.000 —

analysis are summarized in the Table I. The volumebetween 50 and 100, say). Recalling that the sample
fractions in different samples are similar, their valuessize is about 250 points then their mean number is be-
are reasonably close to the expecikd=5% in thin  tween 2.5 and 5 in the individual medium scale test
foils. On the other hand, the intensity estimates varysquares. Taking into account that the valué@ does
considerably. The deviations can be partly explainechot exceed the value of 1, the presence of point pairs
by the increase in the resolution power with growingonly can be expected and their distance must be at least
magnification. Nevertheless, the differences betweewsomparable with the mean nearest neighbour distance
the intensity estimates in samples B, C (observed at the.5/./ of the Poisson point process of the same in-
sameM) as wellasinsamples A, D (observed at compatensity. To confirm this suggestion, several samples of
rableM) is high enough to indicate aninhomogeneity of Poisson point process and mild cluster process ¢kfiat”
dispersion. Assuming that the considered point patternslusters — Poisson distributed numlveof points per
are samples from a stationary Poisson point process (thguster scattered uniformly at random within a disk of
subsequent analysis shows that such an assumptiondsameterD, see [11]) were simulated with a number of
not much unjustified in spite of some important differ- points per square about 200 and compared with the ex-
ences), the 99% confidence intervals of the intensitiamined samples. Rather similar behaviour of the both
estimates], namelyAgo = [A](1 + ug00s/~/N), have  indices was observed in the following case: the diame-
been compared [8, 11] — Table | (hargoos=2.576is terD =1/Aor D =2/, the mean numbédtn = 1; then
the 0.005-critical value of the standard normHD, 1)  approximately 60% of non-void clusters are singletons,
distribution. The disjoint confidence intervals confirm 30% are pairs and 10% are triads. The both indices be-
the inhomogeneity of samples. haved rather similarly as the examined specimens at
low and medium values ah, see Fig. 3. Obviously
no hard-core behaviour was observed at high values of
2.3. Estimation of the point pattern m. The relation between, D, the interval ofm within
arrangement by quadrat count which a deviation of indices from the Poisson values is
Quadrat count is a classical method of spatial statisobserved and the magnitude of this deviation is rather
tics with many applications[2,5-8]. The rectangularcomplex. If the size of the elementary quadrat consid-
observing windowW is divided subsequently into erably exceeds the size of cluster (its diamé&gthen
m= 2i, i =2,3,... translation equivalent rectangles ICS~ En—1 as stated above. Such a situation occurs
(quadrats) and the numbehgj(m), j=1,..., m of whenm is small but then also the value BES con-
points falling into these quadrats are used to estimatgiderably oscillates about its mean value depending on
the sample meamN(m) and sample variance?(m).  the mutual position of the quadrat net and the exam-
Under Poisson point process hypothesis, the statistio§ed pattern. Even it can happen that no peak at small
ID(m) = (M — 1)s?(m)/N(m) called theindex of dis- values ofmis observed similarly as in sample C or in
persionhas they 2-distribution withm — 1 degrees of one simulated sample in Fig. 3 (note that the presence
freedom. Two-side 95% confidence interval is usuallyof clusters can be recognized even wiem= 1).
used forlD(m) and if the null hypothesis is rejected at  Onthe other hand, quadrats smallin comparison with
some values ahwith ID(m) being too small, thenthere D take into account points of a cluster as individual
is an evidence of regularity (hard-core) in the patternpoints and no deviation from PPP can be discerned
Conversely, too gredb (m) reveals a tendency to clus- (compare the simulated cafe=2/+/A in Fig. 3).
tering. Another test statistiCS(m)=m— ID(m)—1  Hence itis difficult to decide whether the observed sys-
called theindex of cluster sizehould approach zero un- tematic decrease ¢€Sis due to hard-core features or
der null (Poisson) hypothesis and its distinctly positivedue to large cluster diametér.
(negative) value is an evidence of clustering (regularity)
— the expected numb@&n of points in clusters would
be roughlylCS+ 1. If a significant departure from the 2.4. Analysis of point patterns by polygonal
Poisson point process is observed only for certain val- method
ues ofm then the are&V/m or the length,/W/mcan  Thisis a very recent computer based method consisting
be related to cluster size or regularity scale, respectivelin the construction of the Voronoi mosaic generated by
(see below). the examined point pattern [6]. Namely, to any point
The results of quadrat count are shown in Fig. 3. Cerof the pattern is attached a polygonal (Voronoi) cell
tain tendency to clustering is revealed — especially irformed by all points in the plane of pattern lying closer
the samples A (the highest value of the both indices}o this point than to any other point of the pattern. Sev-
and B — at largé€smallm~ 15) and medium scalen(  eral characteristics of the mosaic are then measured and
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Figure 3 The dependence of indicé€Sm) and ID(m) (with the two-side 95% confidence interval) on the division parammitéor examined
specimens and for three simulated realizations ofevtatluster field withHEn =1 and cluster diametei3=1, 2 (. =1).

compared with the corresponding values of mosaicsnethods of quadrats where obtained numerical results
generated by Poisson point process (Poisson-Voronaary depending on the position of the quadrat net, the
mosaic — PVM) or by other model processes. The siz&oronoi mosaic generated by the pattern in question is
distribution F5(x) of cell areasa is perhaps the most defined unequivocally.

suitable and arrangement sensitive quantity. The com- The non-zero values @f indicate that the point pat-
parison between patterns of various intensity is made byern has a hard-core character; this is well comprehen-
selecting the length unit fA/A]; then the mean value of - sible as the original particles do not overlap in space
cell area isa= 1. The mosaics generated by clusteredand this feature is not fully lost in the thin foil projec-
patterns are overdispersed in comparison with PVM{ions because of low particle intensity and small thick-
which means that the moments about originas well  ness of the foilsl( /w < 4). The rough estimate of the
as related quantities (skewneg&, kurtosisg,) of  hard-core parametdr (the lower bound of the inter-
area distribution exceeds the corresponding quantitiegoint spacing) based on @ [h] = /4a0A/7 N; the

of PVM. The results of polygonal analysis are presented@btained values should be lower bounds of the particle
in Table 1I; N is the number of analysed cells, are  breadthsv (compare Table I). In view of the poor reli-
the sample moments, S§) is the standard devia- ability of estimating bounds of distributions from small
tion of them, estimate,/b; and b, are the sample samples, the agreement is satisfactory. The value of the
skewness and kurtosis, respectivelyis the nonpara- hard-core parametéris well comparable with particle
metric estimate (c.f. [1]) of the lower bound &f(x) = mean breadths and, at the same time, it is as high as
distribution, i.e.Fa(x) =0 for x <a,. The PVM val- themeannearest neighbour distance in a Poisson pat-
ues obtained by Hinde and Miles [4] are shown for thetern. Such a pattern differs noticeably from the Poisson
comparison. It must be stressed that in contrast to thpoint pattern (if it were produced by dependent thinning
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Figure 4 Cell area probability density functions of point patterns A, B, PPP (a) and C, D, PPP (b).

according to the rules of the Mati hard-core process cell areas in PVM computed by large scale simulations
[11,12], about 30% of points would be removed) andThe test statistics are

it can be expected that the values of the momemts
would be considerably lower than the corresponding s1 N(Zi)N(Z;) b
values in PVM. 2.2, = N(Z)) + N(Z)) Z.Zj»

However, any underdispersion with respect to the
Poisson point process has not been observed and i #j, and S2z =/N(Z)Dz.
the sample moments), are either comparable with
the Poissonian values (samples D, partly C) or considghere D, , =maxFz (x) — Fz (x)] and Dz =
erably higher (A, B). Hence it can be concluded thatmayF, (x) — F(x)|. In the framework of the asymp-
beside a hard-core arrangement, also clustering at thgtic approximation, the hypotheses are rejected at the
length scale exceeditigs presentin allsamples andits sjgnificance leved if Seq > Ki_o, Whereky_, is the
degree is high especially in samples A, B. This outcomgq _ 4)_quantile of the Kolmogorov distribution. In or-
confirms somewhat less definite results of the quadrader o avoid the error of the first type (a rejection of
count. In order to prove this hypothesis, the probabil-y rye hypothesis), a small value @k 0.1 is usually
ity density functions (pdfsf (x) of the cell areas have chosen. However, the reductionaincreases the risk
been estimated using the Epanechnikov kernel estimass an error of the second type (a false hypothesis is
tor [12] (e (x) = 0.75(1— xz/s?)/s for—¢ <x<&and  ccepted).
0 otherwise —with the bandwidgh= 0.25). Theresults ~  The inspection of the Table IIl shows, that the both
are shown in Fig. 4. For the comparison, also the pdhypotheses can be accepted at the significance levels
of PVM is shown (the generalized-distribution pro- '~ 0.1, neverthelessi2 could be rejected for A, B at
posed by Hinde and Miles [4] and based on the largg, — 0.2 and at a slightly higher levéi1 could also be
scale simulation was used). The estimated pdf’s clearlyy|se for pairs A, C and B, C. It should be stressed that
demonstrate the above proposals: delayed starts of thg,g deviations from PVM observed in the specimens,
curves testify hardcores of the points in the pattems,amely hard-core features and clustering mutually can-
whereas shifts of the modes to lower values and slightly.g| to certain degree which makes the quantitative anal-
heavier (in comparison with PVM) upper tails demon-ysis more difficult and the results less convincing.
strate the presence of clustering. . Onthe basis of observed values of area varianges
On the other hand, the difference between pdf's isy hypothesis concerning numbén and cluster size
not much pronounced and some quantitative test ofan also be proposed. If cluster diameReiis small
their statistical difference is desirable. Consequentlyjn comparison with the nearest neighbour distance

two hypotheses have been proposed, hamely

H1: the sets of measured areas are samples (of un-
TABLE Il Results of the Kolmogorov-Smirnov tests

equal size) from the same distribution,
H2: the sets of measured areas are samples from the

area distribution of PVM, 4.2 Slaz  z Sz ks kas kags

, A B 0.763 A 1166
and the Kolmogorov-Smirnov test was used to exama, ¢ 0.999 B 1.200
ine them (see e.g. [5]). LeEyz)(X) be the stepwise A,D 0.764 c 0.763  1.073 1224  1.358
empirical distribution function of the cell areas in spec-B. € 1.048 D 0566
imen Z (Z stands for A, B, C, D), wher&l(Z) is the (B:'B g'ggg -
sample size, and I€t(x) be the distribution function of i
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of cluster centres then the variance of the cell areas ad (1) The samples are representative for the ex-
(generated by Poisson cluster field) is approximately amined composite alloy with respectto included vol-
given by En x my(PPP) [9]. Hence using the values ume fraction of strengthening phase. However, the
in Table I, an estimate £ En <2 follows in agree- particle number per unit volume of the foil varies
ment with the method of quadrats. A higher value of considerably as a function of foil location and used
En would be possible if clusters were greater. Also the magnification.
observed hard-core behaviour can decrease the value ad(2),(3) The Poisson point process is not a suit-
of m,. The presence of clusters in samples C, D thus able model for the point pattern of particle reference
cannot be excluded even when the obsemedC), points because all examined patterns are combina-
my(D) ~ my(PPP). tions of hard-core arrangement with clustering of
The size of clusters can be inferred also from the various degree (increasing in the sequence D, C, A,
shape of the pdfs[10] but samples of a greater size B) at a coarser scale.
would be necessaryin order to obtain their more reliable
estimates. Other tools of polygonal analysis like order
statistics and cell shape analysis are describedin[1, 10Acknowledgements
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